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Abstract  

The Corben-Schwinger  theory  gives imaginary values o f  the  energy, for S~ = 1 states, in 
very intensive magnet ic  fields. The theory  proposed by the  author ,  which is most  satis- 
factory in the  nonrelativistic approximat ion ,  does not  have this defect  for $23 = 1 states, 
bu t  it appears for S~ = 0 states. 

1. In troduct ion 

H. C. Corben & J. Schwinger (1940) have proposed describing the behavior 
of the spin-1 particle, with anomalous magnetic moment, by a four-vector ~r 
and an antisymmetrical tensor ~lrs] which satisfy the equations 

kCr - DS~lrs  ] + ( ieVk)B[rs l  ffs = 0 (1.1) 

k~ t r s  I + [DrCs - DsCr] = 0 (1.2) 

with x4 = ict and 

k = 27rmc/h, Dr = Or - leAr, e = 27rq/h (1.3) 

A r  is the four-potential of  the exterior field which acts on the particle and 
BIrsl = 3rAs - 3sAr is the electromagnetic field. In the nonrelativistic approxi- 
mation we have shown (Durand, 1976) that this equation involves an electric 
quadrupole moment and a term with (div E) whose coefficient was not correct. 
The tensorial equations (1.1), (1.2) are not the most natural when they are 
written in matrix form. Instead of (1.1), (1.2), we have proposed the equations 

k ~  - DS~lrs l  + (ieX/2k)Blrsl  ~s = 0 (1.4) 

kff[rsl + [ D ~ s  - D s ~ ]  + ( ieX/2k)[~t ,p lB[s .Pl  - ~[sp] B[~. ~] ] = 0 (1.5) 

In the nonrelativistic approximation equations (1.4) and (1.5) do not have the 
previously indicated drawback. W. Y. Tsai (1973) has been able to obtain eigen- 
values of  the energy in the theory of Corben-Schwinger for an external homo- 
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geneous magnetic field; he has shown that they become imaginary for the 
states S 1 = 1 and for very intensive magnetic fields. 

We solve here the same problem using equations (1.4) and (1.5). We shall 
see that this difficulty is no longer present for states S~ = 1, but it appears for 
the states S 1 = 0. 

Before calculation, we shall replace the set o f  equations (1.4) and (1.5) by 
a single partial differential equation of  the second order whose resolution is 
easier. 

2. Partial Differential Equation o f  the Second Order 

Multiplying (1.4) by D r and supposing that we are in regions devoid of 
external charges, where OrBits] = 0, we obtain 

Dr ~r = - ( ie /2k)  B[rsl ~[rsI - (ieX/2k2)B[rsl Dr ~s 

Multiplying (1.5) by B Irsl and, on account of  

we get 

(2.1) 

(2.2) 

B[rs] ~[rsl = - (2/k)B Its) Dr ~s (2.3) 

By substituting (2.3) into (2.1), we obtain 

Dr~r = (1 -- X/2)(ie/kZ)B[rSlDr¢s (2.4) 

Still supposing that  we are in a region devoid of  external charges, we operate 
on the equation (1.5) from the left by D s and we obtain 

kDS~[rs] + ieB[rsl ~s + Dr(DS~s) --DSDs~r 

+ (ieX/2k) {B[splDs~lrp] - (3sB[rp])t~ [spl + BIrplDs~Ips] }= 0 

(2.5) 

In (2.5) we replace DS~[rsl by its expression (1.4) and (Dr~r) by its expression 
(2.4). This gives 

(DSD s - ka)tpr = ie(1 + X)B [rsl ~s + (1 - )k/2)(ic/k2)OrB[Pq] Op~q 

+ ~-~-B[pr]B[psleZ)k2 ~s + ie~k2_k [B[SP]Ds~[rp ] _ (OsBlrp])~[sp] ] 

(2.6) 

One looks now for the particular case of  an homogeneous magnetic induction 
Bw. One has then 

B[w41 = 0, B I u v ] =  Bw = Bnw, nu n u = 1 (2.7) 
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The three space components  of  equation (2.6) can be written as 

(DSD s - k2 )~  w = ie( l  + 3,)B[wul ~u + (1 - X/2)(ie/kZ)B[UVlDwDu~v 

e 2 )k 2 

+ B[uwl B[uvl ~v - (ieX/2k)B[UV]Du~[wu] (2.8) 
4k e 

By introducing the matrices Su, •uv, if, ®' defined in the paper previously 
quoted (Durand, 1975), equation (2.8) may be written in the matrix form 

/ 

(D~D r - k2 )¢  = { -eB(1  + X)(Sun u) + (eZX2/4kZ)(SunU) z 
k 

- ( 1  - x/2) ~-  [e~(sun") 2 + (,~uvD"DV)(SwnW)l 

ieXB u v (9' SuSv[n n - nVD u] (2.9) 

The expression for O',  given in Durand (1976), reduces here to 

®' = (i/k)(1 + K)(SuDU)t~ (2.10) 

with 

K = a(Su nu) + b(SunU) 2 (2.11) 

~ke'~ )k2 ~2 coh 
a ( 1 - X 2 ~  2 ) '  b ( 1 - X 2 ~ 2 )  ' ~ =4rrmc a (2.12) 

co=IqIB, /m,  e ' = q / l q i  (2.13) 

Bringing (2.10) into (2.11), we obtain 

(D~D~ - k 2 ) ~  = { - e B ( 1  + X)(S • n) + (eaX2B2/4k2)(Sun~) 2 

- -  (eB/k2)(1 - X/2)[eB(S • n) + (D) 2 - (S "D) 2 [(S ' n )  

+ (ieBX/2k2)(S "[n x D] )(1 + K)(S"  D)} ~ (2.14) 

which is the equation we were seeking. 

3. Eigenvalues o f  the Energy 

Let us consider the particular case n = (0, 0, 1) and D3 = 0. We have then 
a magnetic field in the z direction and ~ is independent o f z .  If, moreover, we 
assume an exponential time dependence, we have also 

(n • S) = $3, D4 = (1/ic)O t = - . (2~/ch) W 

D24 = ( 2rr/h )2 (W/c) 2 = k Z(W/mc2 )2 

(3.1) 

(3.2) 
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Let us introduce the operators Q and R, defined by 

Q ( $ 2 1 2  2 = S2XDI  -D2)+(S1S2 +S2S1)(D1D2 +DzD1) (3.3) 

R = D 2 + D~ + 2eBS (3.4) 

These operators, given by W. Y. Tsai (1973) have noteworthy properties. In 
the first place, Q anticommutes with $3, that is 

{Q, $3 } = 0 (3.5) 

Consequently, it commutes with S~ 

[Q, S 21 = 0 (3.6) 

Moreover, we have 

Finally, Q commutes with R 

S~O = QS 2 = O (3.7) 

[Q, RI = 0 (3.8) 

and the square of Q involves S 2 and R z ; more precisely 

Q2 = S2 (R;  _ e2B 2) (3.9) 

Using the properties of the matrices Su, one finds the expressions 

i ( S . [ n x D ] ) ( S . D ) = ½ ( [ R - - 3 e B S 3 - Q ] S 3 + 2 e B }  (3.10) 

i ( S ' [ n x D I ) S 3 ( S ' D ) = - ( 1 - S ~ ) R = - ( 1 - S 2 ) ( D  2+D~) (3.11) 

i(S "[n x O] )S~(s "O) = eB(1 - S 2) (3.12) 

[ e / 3 - ( S ' n ) + ( / ) ) 2 - ( S ' D ) 2 ] ( S ' n )  = ½ { R - e B S  3 -  Q}S3 (3.13) 

By introducing (3.10)-(3.13) into (2.14) and owing to (2.11)-(2.13), we 
obtain 

k2 (W/mc2)2~  = {k z - (D 2 +D 2) - 2kZe'(1 + X)~S3 

+ k2~Zx2s  2 --e'~(1 - X)[R - 2kee'~S3 - Q]S3 

+ [2k2~aX- ?t2~2(D 2 +D2)(1 -$2) / (1  - X2~2)}~ (3.14) 

The operator S 2 commutes with all the operators that one finds in (3.14). One 
can then choose, for ~, eigenfunctions ofS  2 whose eigenvalues are zero or one. 

lflS2 = 0! one has also $3 = 0 and equation (3.14) reduces to 

(I¥/rnc2)2~ = ~ - { (1 /k2) (D 2 + D 2 ) -  2~2X}~/(1 - 3,2~ 2) (3.15) 

But the eigenvalues of - (D21 + D 2) are 

(2N + 1)2~k 2 (3.16) 
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with N = 0, 1,2,  3 , . . . .  Substituting (3.16) into (3.15), one gets 

(W/mc2) 2 = 1 + [ (2N+ 1)2~ + 2X~a]/(1 - X2~ 2) (3.17) 

from which one can obtain the energy W. 

If  $23 = 1 , equation (3.14) gives 

= 1 - k2 2(1 - ~ k ) ~  2 

+~2X2 e'~ } + ~ 2 ( 1 - X ) S 3 [ 2 k 2 - R - Q ]  ~ (3.18) 
/ 

The operator Q does not commute with $3 and it must be eliminated. For this, 
one may use the canonical transformation given by W. Y. Tsai dealing with the 
Corben-Schwinger theory. 

It proceeds from the following considerations: We consider three operators 
A, B, C which commute except C, that does not commute with B but anti- 
commutes ({C, B} = 0) and we consider their combination 

C(A + B) 

We consider also the operator T and its inverse T -1 , such that 

T ±1 = (l/N/2) (~k(+) + (B/IBI)X(_)} (3.19) 

with 

X(+) = B 2+ i, X(_) = : B 2 1 (3.20) 

We can verify, with X(+)X(_) = IBI/x/A -~ - B 2 that we have 

2TC(A + B)T -1 = Cx/-A 2 - B 2 (3.2 I) 

Under these conditions, we perform the canonical transformation ~ '  = T¢ ,  in 
(37), with 

C+$3, A -~(2k 2 - R ) ,  B - + -  Q (3.22) 

On account of  (3.9) and 

x/(Zk 2 _ R)2 _ Q2 = 2k 2 ~/1 + ~2 _ R/k2 (3.23) 

equation (3.18) may be written 

(W/me2) 2 4 '  = {1 - R / k  2 

+ 2(1 - )k)~ 2 + ~27k 2 + 2e'~(1 -- X)Sax/1 + ~2 _ R/k2}~, 

= {X/1 + ~2 _ R/k2 + e,S3~( 1 _ X)}2~, (3.24) 

because T commutes with operators other than operators A, B, C. This equa- 
tion (3.24) contains only operators $3 and R which commute. One can then 
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choose for ~'  an eigenfunction common to these two operators. On account 
o f  (3. t 6) and with the eigenvalues o f  $3 equal to/~ = -+ 1, one has 

W/mc 2 = ~ + ~2 + (2N + 1 - 2e'/a)2~ + e'/J~(1 - X) (3.25) 

For small values of  ~, with X = 1 + 2K, this equation (3.25) reduces to 

W/rnc 2 @ 1 + [2N + 1 - 2e'~(1 + g)] 2~ (3.26) 

One then recovers the result of  the nonrelativistic theory of  the spin, for a 
particle whose gyromagnetic ration is g = 2(1 + K). The Corben-Schwinger 
theory, instead of  (3.17) and (3.25), leads respectively, to 

W/mc 2 = 1 + (2N+ 1)2~ (3.27) 

and 

(W/me2) 2 = 1 + (2N+ 1 - 2 e ' # ) 2 ~  + 2(1 - X ) ~  2 

+ 2e'~(1 - ~K)S3N/1 + ~2 + (2N + 1 - 2e'~t)2~ (3.28 

In equation (3.28), the term ~2)k2 which appeared in equation (3.24) does not 
appear, the latter being a perfect square. Consequently the right-hand side o f  
(3.28) may become negative and the energy W may be imaginary. On account 
of this, W. Y. Tsai says that the theory of  Corben-Schwinger is "inconsistent." 
On the other hand formula (3.27) which corresponds to states S 2 = 0, does 
not have this defect. Inversely, our theory leads to a satisfactory expression 
for the states S 2 = 1, but  the formula (3.17) which concerns the states S 2 = 0 
is not  convenient. Not only rfiay the energy become imaginary, but  it becomes 
infinite for ~-X 2 = 1. One can also say that the states S~ = 0 no longer exist 
when ~2X2 > 1. 
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